

FIREFLY

LAUNCH WITH

1 LPH/

PAYLOAD USER'S GUIDE

1.	FIREFLY OVERVIEW	3
	Contact	3
2.	Alpha Launch Vehicle	4
	Performance	6
	Flight Profile	7
	Payload Injection & Separation	7
	Payload Fairing	8
	Payload Interfaces	9
	Payload Accommodations	10
	Alpha Electrical Interfaces	11
3.	Flight Environments	12
	Quasi-Static Acceleration Loads	12
	Acoustics	13
	Shock	14
	Random Vibration	15
	Equivalent Sine Vibration	16
	Pressure and Venting	18
	Thermal and Cleanliness	19
	Radio Frequency and EMI/EMC	20
4.	Operations	21
	Standard and Non-Standard Services	21
	Payload Processing Flow	22
	Launch Campaign Timeline	23
5.	Mission	24
	Customer Deliverables	24
	Mission Management	25
	Safety Requirements	25
	Security	25

Hazardous Systems and Operations	25
Waivers	25
6. Facilities	26
Corporate Headquarters	26
Production and Test Facilities	26
Launch Complexes	27
Horizontal Integration Facility	29
Payload Processing Facility	30
Infrastructure	30
7. References	31
Acronyms	31
List of Figures	32
List of Tables	33
Annendix A	33

Revision History

Version	Date	History
1.0	March 2018	First Release
2.0	August 2019	Updated Release
3.0	March 2022	Updated Release
3.1	April 2022	Improved Release
4.0	July 2023	Orbital Launch Release

The Alpha Payload User's Guide - Version 4.0 has been cleared for open publication by the Defense Office of Prepublication and Security Review, Department of Defense, as stated in letter 23-S-2539, dated July 17, 2023

1. FIREFLY OVERVIEW ///

Figure 1. Firefly's Successful Orbital Alpha Flight & Payload Deployment on October 1, 2022

Firefly is an end-to-end space transportation company offering launch, in-space, and lunar services. The company is focused on delivering responsive, reliable, and affordable space access for government and commercial customers. Firefly's small to medium lift launch vehicles, Space Utility Vehicles, and Blue Ghost lunar landers provide the industry with a single source for missions from LEO to the surface of the Moon and beyond.

As an all-American company headquartered in central Texas, Firefly's vehicles share common components, teams, and facilities to scale efficiency and increase reliability. Firefly has also established itself as a world leader in rocket propulsion and carbon composite structures that allow us to lift heaver payloads at a much lower cost. The company's rapid-assembly manufacturing capabilities deployed across the organization further allow Firefly to accelerate production time and support rapid mission schedules.

Though this guide is specific to the Alpha Launch Vehicle (LV), Firefly offers a family of other space transportation services. The company's Space Utility Vehicle (SUV), available as a third stage on Alpha, offers additional opportunities for in-space mobility, logistics, and surveillance. Firefly's Blue Ghost lander further providers opportunities for lunar delivery and operations.

The technologies employed in the flagship Alpha vehicle provide a clear pathway for future incremental improvements in capability and expansion of Firefly's launch services, including a Medium Launch Vehicle.

Contact

Firefly Aerospace, Inc.

1320 Arrow Point Drive, Suite 109 Cedar Park, TX 78613

Web: www.fireflyspace.com

E-Mail: launch@fireflyspace.com

2. ALPHA LAUNCH VEHICLE ///

Alpha provides low-cost launch capabilities for small satellite customers at a price of \$15M for a dedicated commercial launch service. Alpha is designed to be the most reliable and responsive launch option within the small launch vehicle class. Supported by Firefly's streamlined approach to mission planning, integration, and launch, Alpha is a well-rounded choice for commercial, civil, and national security missions.

Table 1. Alpha Launch Vehicle Specifications

Performance				
Payload [SSO, 500km]	630 kg			
Payload [LEO, 300km]	1,030 kg			
Archite	Architecture			
Gross Lift-Off Weight (GLOW)	54,120 kg			
Number of Stages	2			
Total Length	29.48 m [96.7 ft]			
Max Diameter	2.2 m			
Structure	All Composite			
Propulsion				
Oxidizer	LOX			
Fuel	RP-1			
Max Thrust [Stage 1]	801 kN [180 klbf]			
Max Thrust [Stage 2]	70 kN [15.7 klbf]			

Alpha is manufactured with a 100% carbon composite airframe including state-of-the-art linerless, cryogenic propellant tanks to enable a strong, lightweight vehicle.

Firefly's propulsion technology further simplifies and reduces weight in the flight-proven rocket engines. Alpha's four Stage 1 Reaver engines and one Stage 2 Lightning engine run with a patented tap-off cycle that removes the need for heavy pre-burners and excess engine components. The reduced engine mass directly correlates to additional mass to orbit.

Alpha's Mission Management utilizes Streamlined Coupled Loads Analysis (CLA) and Interface Control Documents (ICD) to decrease mission analysis completion times from months to weeks or days, depending on payload complexity. Every payload, whether dedicated or Rideshare, is treated with tremendous care to ensure mission success. Along with launch services, Firefly can provide world class customer support in spacecraft and mission development.

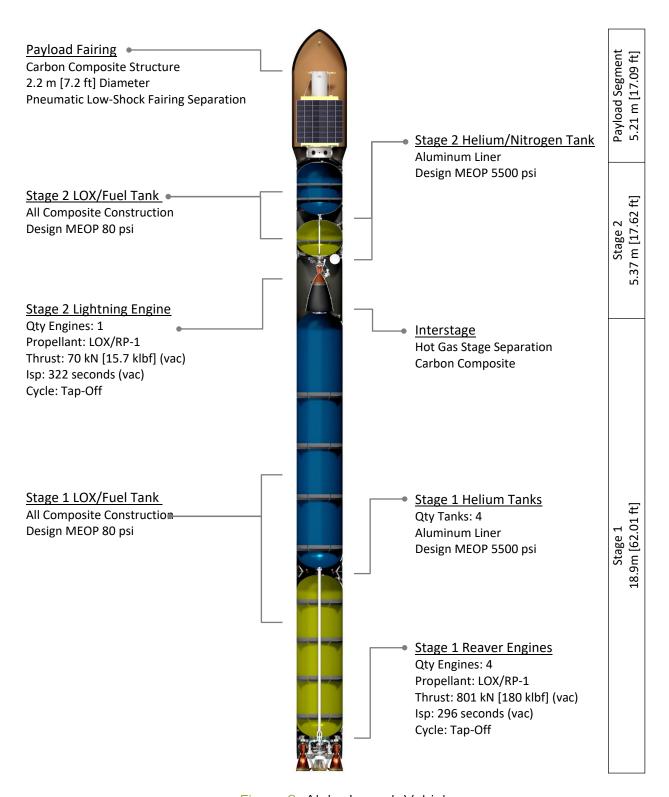


Figure 2. Alpha Launch Vehicle

Performance

The figures below show Alpha's performance capabilities from eastern and western ranges. These payload masses to orbit represent the total payload mass including the spacecraft, separation system, and adapter. These figures represent common orbits, please contact Firefly directly for other desired destinations. Alpha's performance may be affected by upper stage deorbit burns and regulatory constraints.

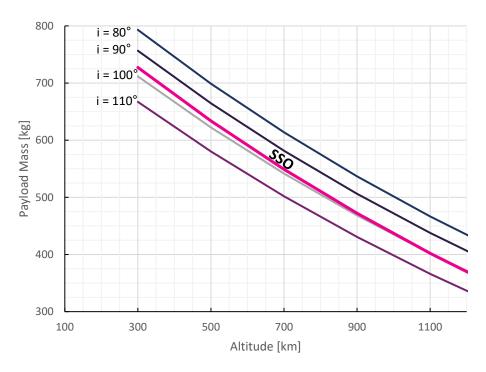


Figure 3. Alpha West Coast Performance Capability for Common Inclinations

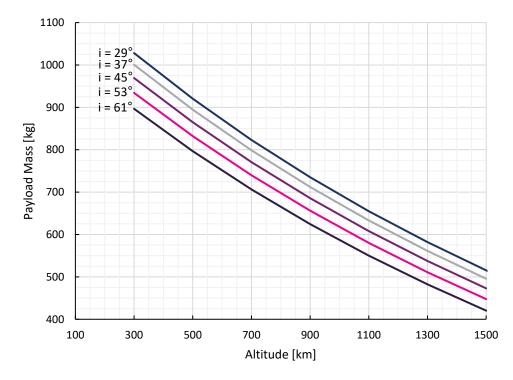


Figure 4. Alpha East Coast Performance Capability for Common Inclinations

Flight Profile

Figure 5 illustrates a representative flight profile of an Alpha launch vehicle 2-burn mission. Although all missions follow a similar profile, timing for key events will vary per mission.

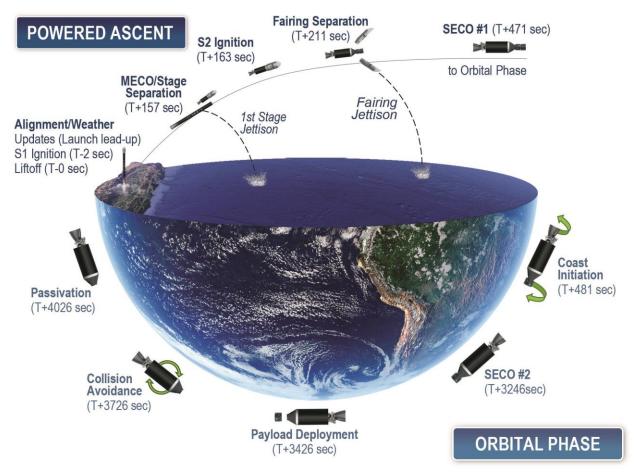


Figure 5. Alpha Flight Profile

Payload Injection & Separation

Precise pointing and orbital insertion are provided by a navigation control module consisting of an Inertial Measurement Unit (IMU) and Global Positioning System (GPS) receiver on the upper stage of the launch vehicle. The values in Table 2 represent three-sigma dispersions for a LEO mission with a second stage Probability of Command Shutdown of 99.7%.

Table 2. Payload Injection and Separation

Payload Injection Accuracy

- ± 10 km perigee altitude
- ± 10 km apogee altitude
- ± 0.1 deg inclination
- ± 0.15 deg RAAN

Payload Separation Parameters

- > 1 ft/sec [0.348 m/sec] separation velocity
- < 1.4 deg pointing accuracy on each axis
- < 1 deg/sec stability in pitch, yaw, and roll

Payload Fairing

The Alpha payload fairing (PLF) is a carbon composite structure developed, manufactured, and qualified by Firefly. It measures 2.2 m (7.2 ft) in diameter, and 5 m (16.4 ft) in height. The fairing separation system employs a debris free, low-shock pneumatic separation system fully tested prior to each flight.

The payload fairing remains latched until launch ascent free molecular heating is below 1,136 W/m². Immediately thereafter, Alpha initiates a low shock separation event to deploy the two fairing halves from the payload attach fitting (PAF) and LV upper stage.

The dynamic payload envelope accounts for dynamic movement of the fairing and payload relative to one another, thermal expansion, and manufacturing tolerances. To avoid coupling with low frequency LV modes and violating this envelope, the spacecraft (SC) should be designed to fundamental frequencies of greater than 8 Hz lateral and 25 Hz axial. The figure below shows the dynamic payload envelope with all units in inches.

Detailed drawings of the fairing envelope, access doors, and payload attach fitting interface are in appendix A.

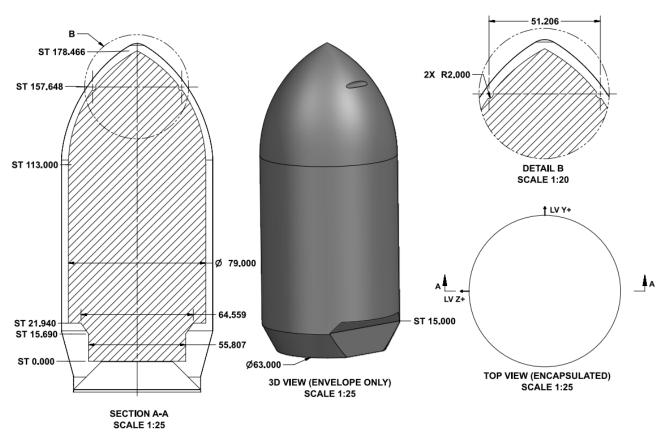


Figure 6. Alpha Payload Fairing Dynamic Envelope

Payload Interfaces

The Alpha vehicle features a standard 38.81" bolt pattern interface which is compatible with the industry standard 937mm adapter and other Firefly-specific dispenser structures. Firefly can accommodate all industry standard interfaces and separation systems, depending on customer needs. Accommodations outside the standard bolt pattern may be negotiated and should be discussed early in the mission planning process.

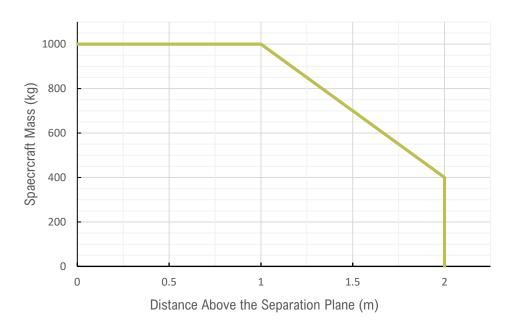


Figure 7. Allowable Payload CG Height

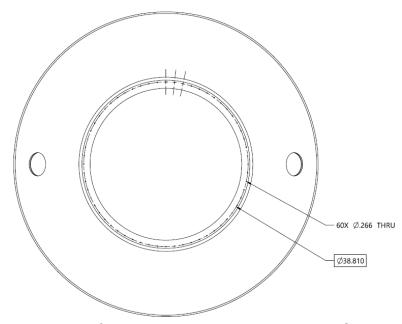


Figure 8. Payload Interface Dimensions in Launch Vehicle Coordinate Frame

Payload Accommodations

Firefly offers several standardized payload configurations. Each configuration is compatible with industry standard separation systems. Firefly also has the ability to design customized adapters. The available payload volume for each configuration is shown in green in Figure 11 below.

For customers with flexible destination orbits and launch dates, Firefly offers Rideshare options on Alpha. Customers looking for Rideshare should inquire with Firefly for available flights, but example options are shown below. Firefly pairs Rideshare customers with missions that best fit their needs and executes with the same care and attention as a dedicated launch.

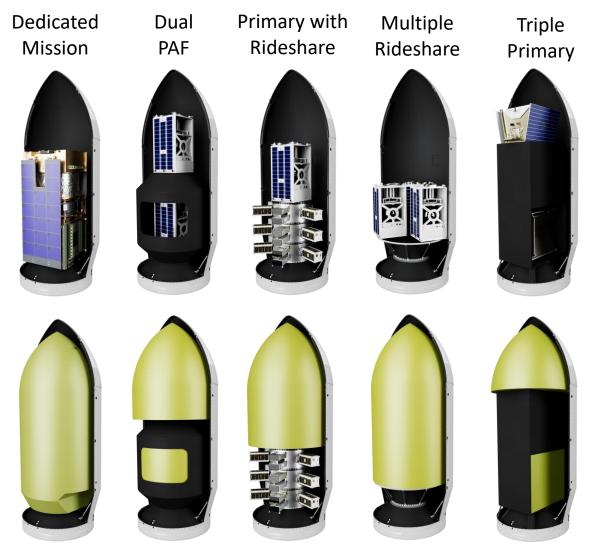


Figure 9. Common Payload Attach Fitting Configurations

Alpha Electrical Interfaces

The Alpha launch vehicle provides an electrical interface between the spacecraft and the customer ground support equipment. The Alpha LV is equipped with both a flight interface and a ground interface. The flight interface with the spacecraft is for separation commands and separation monitoring. The ground interface is available up to T-0 via a quick-disconnect umbilical on the Alpha payload base assembly.

Alpha's standard electrical interface for the primary payload is compatible with all industry standard separation systems and spacecraft customer needs. Additional electrical interface options are available based on customer mission unique needs.

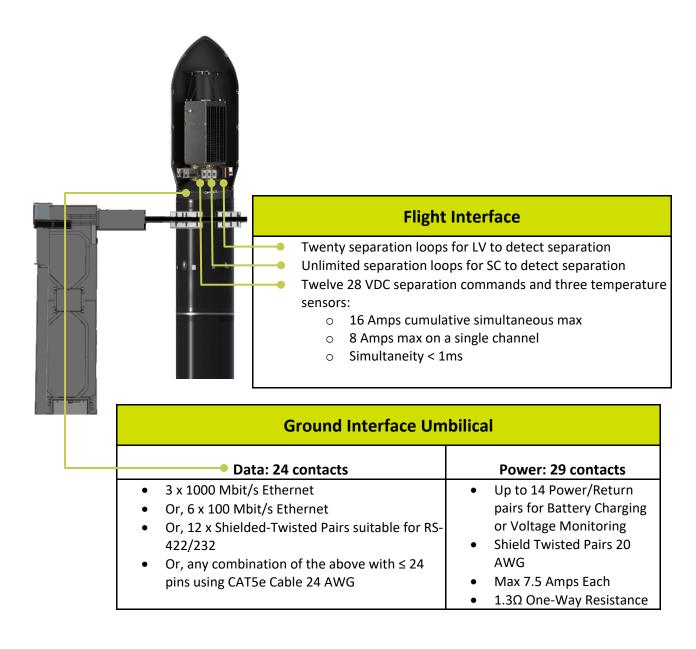


Figure 10. Alpha Electrical Interface

3. FLIGHT ENVIRONMENTS

Alpha LV loads are flight proven and industry peer reviewed. The loads and environments are less than those historically produced by small to medium class launch vehicles, limiting the need for payloads to expend resources for additional isolation systems or other mitigation techniques. Key design elements to reduce environmental levels include eliminating the use of pyrotechnic devices near the payload, pad-based water suppression, and advanced composite structures that mitigate transmission of LV produced loads and environments. Coupled Loads Analysis (CLA) and integrated thermal analysis models are used to ensure full compatibility with each SC design. All payloads shall be qualified to these minimum levels prior to launch.

Quasi-Static Acceleration Loads

Figure 13 illustrates the maximum predicted axial and lateral quasi-static loads induced to the payload during launch. Payloads desiring launch on Alpha should account for these worst-case loads. These loads originate from a complex mix of vehicle accelerations, pitch maneuvers, aerodynamic buffeting, and coupling of loads. The completion of the mission specific CLA analyses will confirm if potential loads can be reduced for a specific mission.

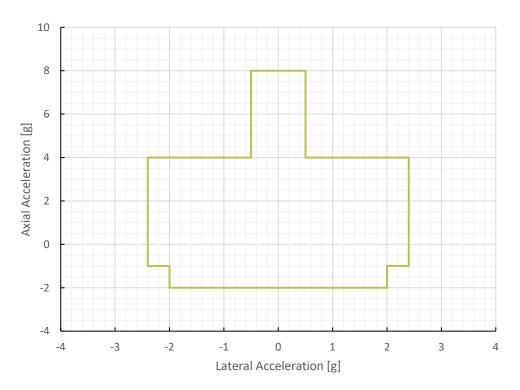


Figure 11. Alpha Maximum Quasi-Static Load Factors

Acoustics

Alpha LV acoustic protection is intended to provide an Overall Sound Pressure Level (OASPL) below 139 dB. Currently predicted sound pressure levels within the PLF are well below this value due to the use of water deluge.

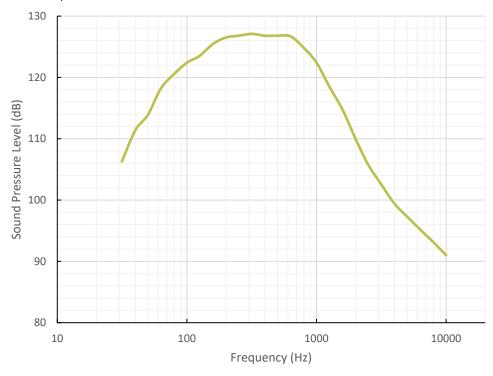


Figure 12. Alpha Maximum Predicted Acoustic Environment

Table 3. Alpha Sound Pressure Levels

Center Frequency [Hz]	Sound Pressure Level [dB]	Center Frequency [Hz]	Sound Pressure Level [dB]
31.5	106.3	630	126.7
40	111.4	800	124.8
50	113.9	1000	122.4
63	118.2	1250	118.6
80	120.6	1600	114.6
100	122.4	2000	110.0
125	123.5	2500	105.8
160	125.5	3150	102.6
200	126.5	4000	99.4
250	126.8	5000	97.3
315	127.1	6300	95.2
400	126.8	8000	93.1
500	126.8	10000	91.0
OASP	L [dB]	13	6.5

Shock

The maximum shock environment at the payload interface occurs during payload deployment. Shock levels at the payload separation interface due to hold-down release, stage separation, engine ignition and cutoff, and payload fairing separation are all maintained below a maximum acceleration of 750 g's at 1400 Hz. Shock environments heavily depend on the mission-specific payload separation system. The shock environment below is for the usual shock at the payload separation plane.

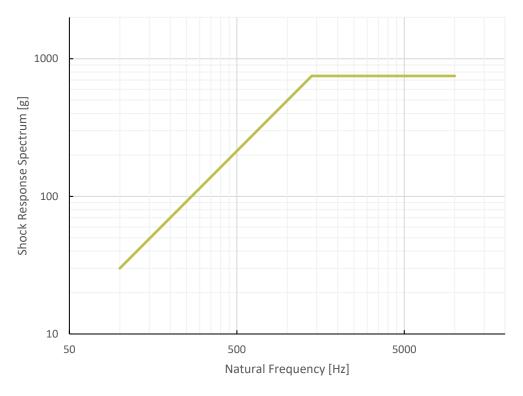


Figure 13. Alpha Maximum Predicted Shock Response Spectrum

Table 4. Alpha Frequency and Acceleration Levels

Natural Frequency [Hz]	Maximum Acceleration [g]
100	30
100 - 1,400	7.343 dB/Octave
1,400 - 10,000	750

Random Vibration

Payloads are subjected to a combination of engine vibrations, vehicle structural modes, acoustics, and aerodynamic forces. The intensity of these vibrations is highly dependent on the payload mass, stiffness, and the interface between the payload and the launch vehicle. The predicted maximum random vibration Power Spectral Density (PSD) is for a payload mass of 90 kg or greater. Lighter payloads may experience increased vibrations.

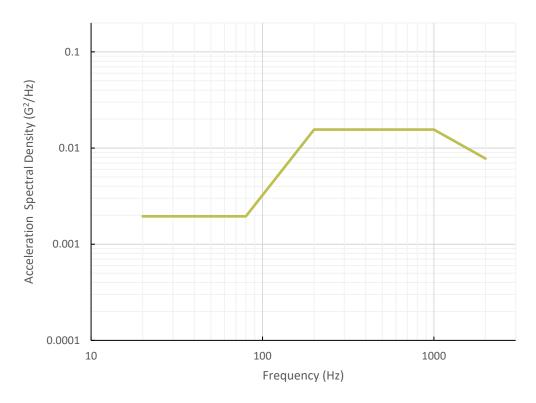


Figure 14. Alpha Random Vibration Environment Plot

Table 5. Alpha Random Vibration Frequency and PSD Levels

Frequency [Hz]	Alpha PSD Level [g²/Hz]
20 - 80	0.00195
80 – 200 Hz	15.73 dB/Octave
200 – 1000 Hz	0.01556
1000 – 2,000 Hz	-13.67 dB/Octave
2,000 Hz	0.00778
g _{RMS} [g]	4.93

Equivalent Sine Vibration

Maximum Alpha sinusoidal vibration environments envelope all stages of flight. These represent the maximum predicted sine vibe environments for the payload, but a CLA analysis will be needed to prove further compliance.

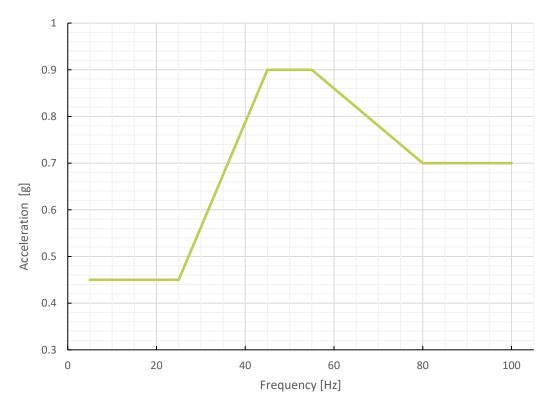


Figure 15. Alpha Axial Sine Vibration Environment

Table 6. Axial Sine Frequency and Acceleration Levels

Frequency [Hz]	Acceleration [g]
5	0.45
25	0.45
45	0.9
55	0.9
80	0.7
100	0.7

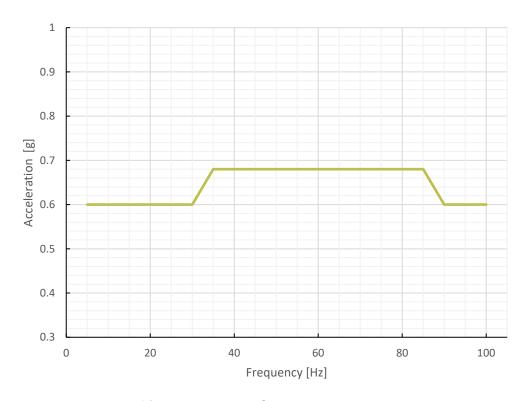


Figure 16. Alpha Lateral Sine Vibration Environment

Table 7. Lateral Sine Frequency and Acceleration Levels

Table 7. Lateral Sine Frequency and Acceleration Levels		
Frequency [Hz]	Acceleration [g]	
5	0.6	
30	0.6	
35	0.68	
85	0.68	
90	0.6	
100	0.6	

Pressure and Venting

During ascent, the fairing will relieve internal pressure through one-way vents located at the aft end of the payload fairing. The pressure decay rate will not exceed -0.3 psi/second, except for a brief period during transonic flight, when the decay rate is not expected to exceed -0.9 psi/second (not depicted in the plot).

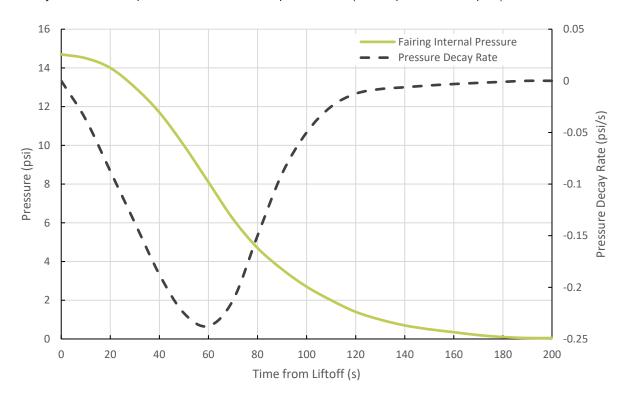


Figure 17. Alpha Payload Fairing Venting Environment

Thermal and Cleanliness

The Alpha launch vehicle provides the payload with standard thermal, humidity, and High Efficiency Particulate Air (HEPA) clean controlled environments from encapsulation through liftoff. Firefly can accommodate contamination-sensitive payloads from integration in the Payload Processing Facility (PPF), roll-out to the launch pad, and through launch. For payloads with more extensive requirements, Firefly can provide additional cleaning, filtration, contamination mitigation protocol, and verification as a non-standard service.

Table 8. Thermal and Cleanliness Environments

Table 0. Thermal and Clea	ZI IIII IOOO EI IVII OI		
Cleaning and Materials	Payload Processing	Rollout and Pad Ops	Flight
All major surfaces including the PLF and PAF are Visibly Cleaned to IEST-STD-CC1246D	✓		
Major materials within line of sight of the payload comply to 1% TML 0.1% CVCM	✓	✓	✓
Air Cleanliness			
ISO 8 (Class 100K) HEPA air in PPF and PLF	✓	✓	
GN2 purge available as an upgrade	✓	✓	
Prevention of high velocity air impingement directly onto the payload	✓	✓	✓
Mission specific ISO 7 (Class 10k) available	✓	✓	
Temperature			
Temperature controlled air 10-27 deg C [50-80 deg F]	✓	✓	
Maximum FMH < 1,136 W/m ² [0.1 BTU/ ft ² /s]			√
Relative air humidity controlled from 20-60%	✓	✓	
PLF internal surface temperature < 93 deg C [200 deg F]	√	√	✓

Radio Frequency and EMI/EMC

Alpha can accommodate payloads which are powered on during launch, but for standard operations it is recommended payloads be powered off during launch to reduce the potential for interference or damage caused by Radio Frequency (RF) or Electro Magnetic Interference (EMI). The Alpha vehicle is capable of interleaved telemetry for payload monitoring during flight. Customers must ensure payload components or material constituents sensitive to RF transmissions are compatible with the Alpha radio frequency and EMI/EMC environment provided in the table below.

Table 9. Alpha Radio Frequency and EMI/EMC Environments

Function	Frequency
S-Band Transmitter	2.2 – 2.29 GHz
Avionics Power Switching	100 kHz - 400 kHz, 440 kHz, 660 kHz, 960 kHz
GPS L-Band Receiver	L1: 1575.42 MHz
	L2: 1227.60 MHz
	L5: 1176.45 MHz

4. OPERATIONS ///

Standard and Non-Standard Services

As part of the launch package, Firefly offers the standard services listed below. Firefly also offers mission unique services upon request. These non-standard services may have impacts to schedule and cost. Requests for mission unique services should be discussed early in the mission planning process.

Standard Services

- · Dedicated Firefly Mission Manager
- Development of a mission-specific Interface Control Document (ICD)
- Launch vehicle licensing, including FAA and Range Safety Documentation
- Preliminary and final modeling and analysis of the integrated mission, including performance analysis, CLA, and thermal modeling
- · Fit Check verification of the Payload to the Payload Adapter
- Certified ISO 8 (Class 100K) cleanroom for payload to PAF integration areas, encapsulation, and through launch
- Mission dress rehearsal for key launch personnel
- Payload access prior to payload fairing closure
- Post-flight launch services, including payload separation confirmation, delivery of the Post-Flight Data Package, Payload Environment Report, and final deployment Orbital Parameter Message (OPM)

Mission Unique Services

- Payload Separation system provided by Firefly
- Customized or multi-payload dispenser
- · Expedited Launch Campaign Timeline
- · Rapid Response and Replenishment Missions
- Certified ISO 7 (Class 10K) cleanroom for payload to PAF integration areas and encapsulation
- · Contamination control analysis
- Payload hazardous fueling and pressurization accommodations
- · Mission Unique Payload Fairing access door
- Dedicated payload GN2 purge, up to T-0
- RF Transmission after payload encapsulation, and before payload separation
- Re-Radiation System
- · Payload Facing Mounted Cameras

Additional services may be available upon request.

Payload Processing Flow

Payload Arrival

The payload arrives at the Payload Processing Facility (PPF) and is lifted from the transportation carrier by lift truck or overhead crane. The payload is removed from its shipping container and readied for checkouts. Once checkouts and any fueling are complete, combined SC and LV operations begin with mating of the SC to the payload adapter. Once the payload is fully assembled onto the PAF and any additional services performed, it is then ready for encapsulation.

Payload Encapsulation

Payloads are encapsulated within the payload fairing in a vertical or horizontal orientation. Once encapsulated, a continuous supply of HEPA filtered and temperature-controlled air is supplied to the PLF. Direct airflow impingement upon sensitive components is minimized. Then the encapsulated payload is broken over to a horizontal position and mated to the LV. The encapsulated payload remains in the horizontal position until the integrated launch vehicle is rolled to the launch pad and erected to vertical position prior to launch.

Payload Fueling

As a non-standard option; hazardous, green, other propellants, and pressurization accommodations may be provided by Firefly. Depending on the propellant, these accommodations may take place at third-party facilities prior to transportation to the launch complex. Propellant loading details will be coordinated as part of tailored mission support to the payload.

A nominal payload processing timeline is shown in the figure below. Actual processing times are flexible based on mission constraints.

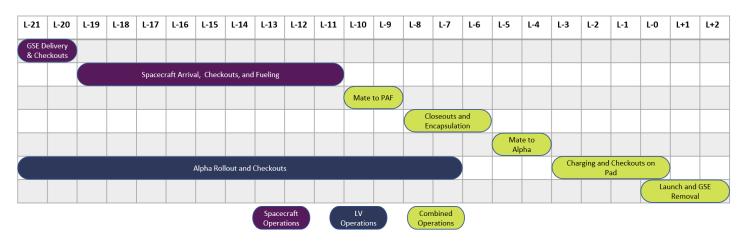


Figure 18. Nominal Payload Processing Flow

Launch Campaign Timeline

Each Firefly mission follows a standard mission timeline. Flexibility is offered for customers needing an expedited schedule and should be discussed early in the mission planning process. All dates provided in the table below are intended as guidelines, and not firm constraints.

Table 10. Notional Launch Campaign Timeline

Schedule	Event
L-9 m	Signing of Launch Agreement and Completion of the Payload Questionnaire
L-9 m	Kickoff and Delivery of Payload Data Package
L-7 m	Firefly Delivery of Preliminary Mission Analysis
L-6 m	Begin Mission Integration and Ground Operations Working Groups
L-5 m	Firefly Delivery of Final Mission Analysis
L-3 m	Fit Check (Flight or Mass Simulator)
L-6 w	Commencement of Launch Campaign
L-4 w	Customer Delivery of Payload
L-2 d	Launch Readiness Review
L-0	Launch 💂
Payload Deploy +1 h	Final Confirmation of Payload Separation and State Vector
L+2 w	Mission Data Review

Rapid response and replenishment missions are available as a non-standard service. For these missions, the mission analysis is done ahead of time. Firefly can store ready-to-launch payloads and a dedicated white-tail Alpha vehicle at the launch site until the request for launch. Upon receiving a request for launch, Firefly can process the payload and complete the launch in four weeks or less.

Customer Deliverables

Table 11. Customer Deliverables

Deliverable	Description
Completed Payload Questionnaire	An important first step for mission planning is the completion of Firefly's Payload Questionnaire. This is provided by the Mission Manager and gives necessary insight into the mission requirements.
Payload Safety Data Package	Safety documentation and data to support Range Safety operations and launch planning are requested early in the mission planning process. It is the customer's responsibility to supply all design, qualification, and acceptance test information for all hazardous elements of the payload.
	Customers are expected to complete inputs to the Missile System Prelaunch Safety Package (MSPSP) using the template provided by Firefly. The Firefly Mission Manager integrates this information into both the Federal Aviation Administration (FAA) licensing application and the Range Safety Review Package.
Engineering Data Package	 The Engineering Data Package includes, but is not limited to: CAD (inclusive of separation systems and appendages) Thermal and Structural Models Archimedes Volume Emitter Characteristics Mass Properties Report Payload Analysis and Test Report
	Any requests to operate outside of standard environmental parameters specified herein must be included.
Payload Processing Plan	A detailed Payload Processing Plan including any requests for non-standard services pertaining to payload processing and launch operations.
Mass Model	A mass model of the payload is to be provided by the customer for fit checks. Mass models should show interfaces representative to flying on Alpha.

Mission Management

Each customer is assigned a Firefly Mission Manager (FMM), who will remain the direct point-of-contact throughout the mission planning and launch process. Customers can expect transparency and open communication from their FMM. The FMM works closely with their customer counterpart mission manager, ensuring all facets of the mission planning and integration process are completed in a timely manner. The FMM holds weekly mission integration meetings to keep an open discussion with the customer and maintain 100% transparency. In addition to ensuring a seamless integration process to the launch vehicle, the FMM is also the key interface to both the Firefly Launch Campaign Manager and the Range Safety Officer. The Launch Campaign Manager interface exists to accommodate the SC and customer needs at launch site facilities. The Range Safety Officer ensures compliance to all ground and flight safety requirements.

Safety Requirements

Safety is paramount in the mission planning and launch process. The customer's Mission Manager, along with the Mission Assurance team, will ensure payloads meet all safety requirements throughout the design and launch planning process. Firefly will serve as a direct liaison between all customers and range safety officials.

It is mandatory for customers to be in compliance with applicable AFSPCMAN 91-710 requirements, as well as FAA 14 CFR, Part 400 for payload development, including the design of both flight and ground systems. Customers are responsible for providing inputs to the Firefly MSPSP during early stages of mission planning as part of Firefly's Safety Data Package. Critical safety inputs include batterie systems, pressure vessels, propulsion systems, ground support equipment, and separation systems.

Customers are responsible for obtaining their own remote sensing, radio frequency approvals, and ensuring their payload meets all launching states involved in their mission's insurance requirements. Contact Firefly with inquires on special grounding requirements and ordnance devices.

Security

Firefly guarantees payload security while in the PPF and on the launch site. All facility access is controlled by badge access via security personnel. Approved visitors to the launch site are granted temporary badges for rapid access to Firefly facilities. 24/7 video monitoring and strict access control to key areas ensures payload security requirements are accommodated.

Hazardous Systems and Operations

Payloads qualifying as a hazardous system or requiring hazardous operations outside of Firefly's Standard Service Package will require both Firefly and range safety approval prior to performing the operation or conducting launch. The customer's payload classification will be determined early in the mission planning stages, to ensure proper permissions are granted.

Waivers

In the event systems or operations do not meet safety requirements but are believed to be acceptable for ground and launch operations, Range Safety officials may grant a waiver. It is the policy of both Firefly and Range Safety that waivers are used as a recourse and are not considered standard practice.

Corporate Headquarters

Firefly's Corporate Office is headquartered in Cedar Park, Texas. It is an open engineering environment to encourage collaboration. Headquarters also houses the main Mission Control Center (MCC) where major stage tests, operations, and launch can be monitored and supported.

Figure 19. Firefly's Texas Headquarters, Production, and Test Facilities

Production and Test Facilities

Launch vehicle production, integration, and testing are conducted in Briggs, Texas, at a 200-acre facility 30 minutes north of Firefly Headquarters. The test site is fully staffed and incorporates multiple facilities including a 10,000 ft² mission control room and a 100,000 ft² production shop. The site includes several operational test stands for engine, structural, component, and integrated stage testing.

Launch Complexes

Firefly launch sites provide customers with a wide range of orbit options to fit mission objectives. Each facility supports both dedicated and multiple manifest missions. Other orbit inclinations than those shown may be possible; inquire with Firefly for additional details.

SLC-2, Vandenberg Space Force Base

Firefly conducts Polar and SSO launches to high inclinations from SLC-2 at Vandenberg Space Force Base (VSFB), California. VSFB can support launch azimuths from 160 degrees to 260 degrees.

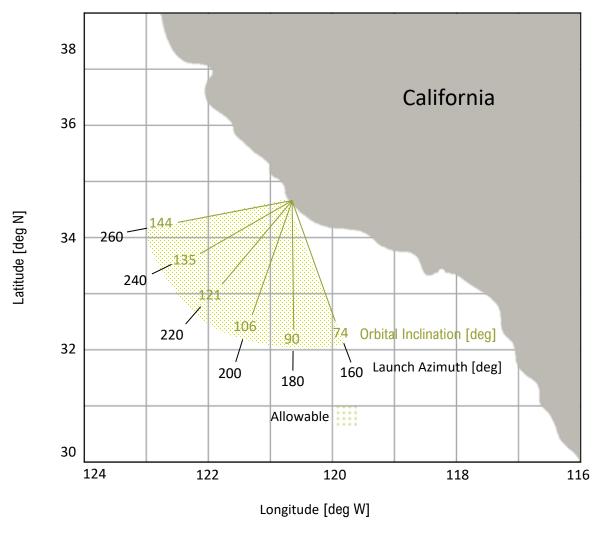


Figure 20. VSFB Launch Inclinations and Azimuths

SLC-20, Cape Canaveral Space Force Station

SLC-20 is an established launch complex located at Cape Canaveral Space Force Station (CCSFS) Florida. CCSFS can support launch azimuths from 35 degrees to 120 degrees.

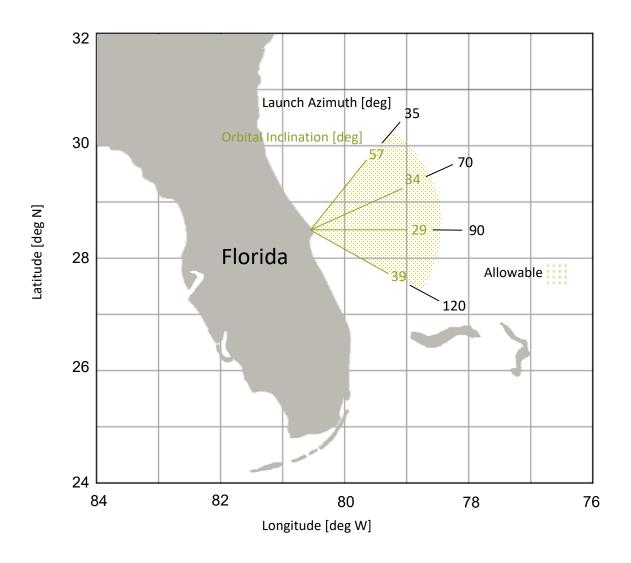


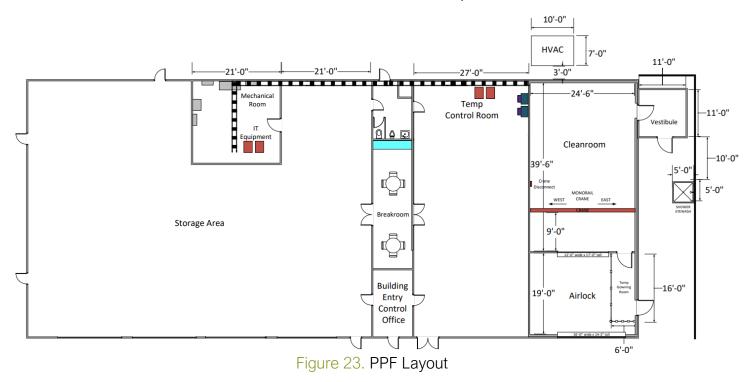
Figure 21. CCSFS Launch Inclinations and Azimuths

Horizontal Integration Facility

An on-site Horizontal Integration Facility (HIF) is utilized for processing and integration of Firefly launch vehicle stages. The HIF is also where the integrated PLF will be mated to the LV. The facility is climate controlled and provides power and the high-pressure gases used for processing Alpha LVs. The HIF is a 5,000 ft² open high bay with an eave height of 25 feet. This allows for removal and unloading of components from flatbed transportation trailers with deck heights up to 58". Two bridge cranes in the high bay support processing and operations. Multiple engineering workstations, administrative space, and communications equipment rooms are available for customers.

Figure 22. VSFB Horizontal Integration Facility

Payload Processing Facility


The PPF provides environment controlled space and equipment for payload processing and encapsulation with a high bay, an airlock, a garment room, and office space. The PPF is a 120 m² climate-controlled ISO 8 (Class 100K) cleanroom. Ancillary rooms will be visibly clean, air conditioned, humidity-controlled workspaces. Available power consists of 120/240 V single phase 60 Hz for processing. Additional power and equipment can be made available on a mission unique basis. Firefly provides transportation of the encapsulated payload from the PPF to the launch pad while maintaining the climate-controlled cleanroom environment.

Infrastructure

Firefly offers standard infrastructure for customers. In addition to office workspace, Firefly offers high-speed broadband internet access in the payload processing facilities. Electrical ground support equipment (EGSE) power sources are available at the PPF and the launch equipment building.

Customer access to the launch vehicle is restricted to payload/launch vehicle processing operations and activities. Customers may view the launch vehicle during precoordinated times. Escorted viewing of and access to the launch pad is granted to customers on a non-interference basis with launch vehicle operations. Due to U.S. Government International Traffic in Arms Regulations (ITAR), and Export Administration Regulations (EAR), non-US customers and personnel may view the vehicle while in its processing and assembly facility only if proper U.S. Government approvals are in place.

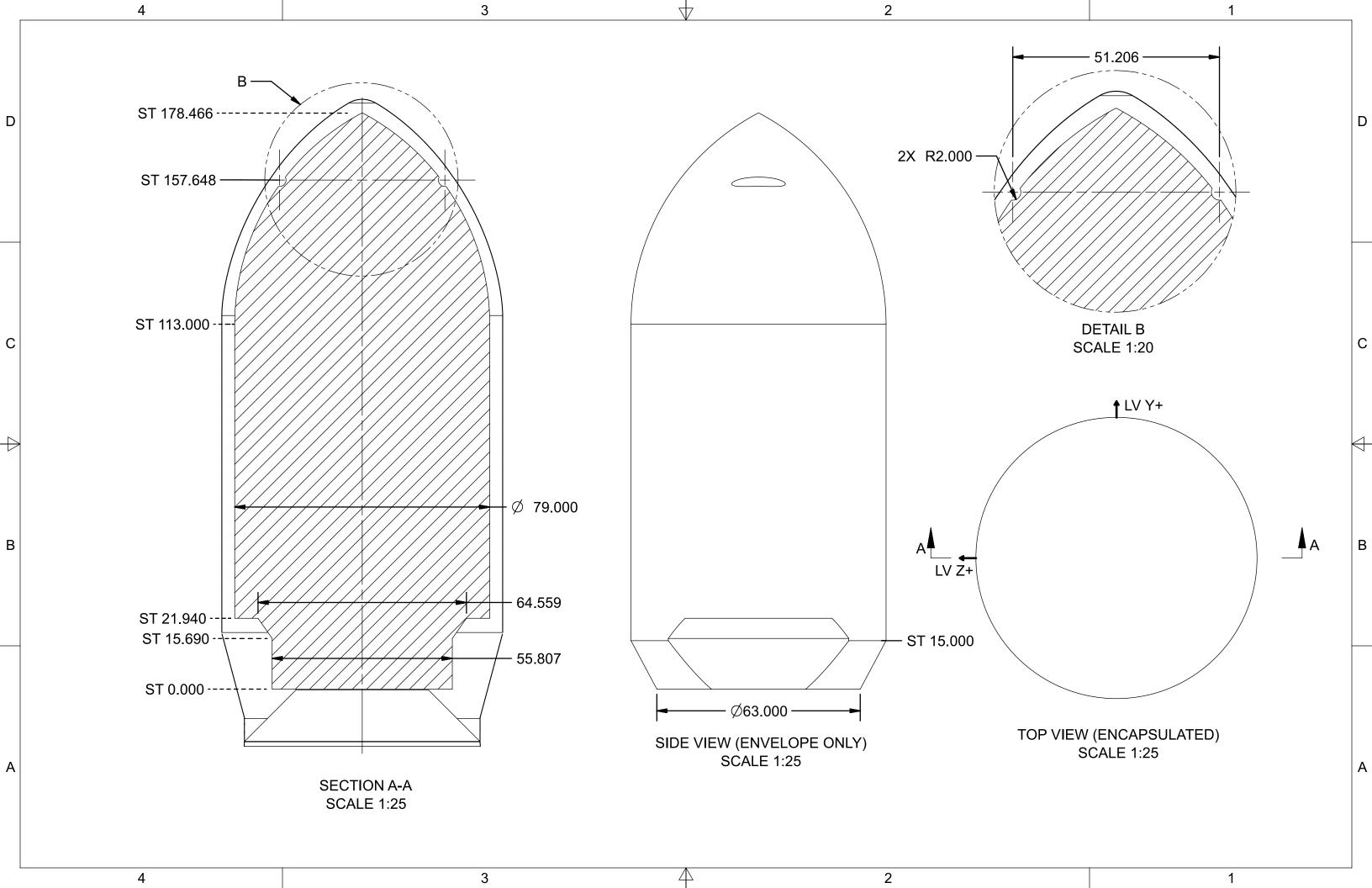
Customers will be invited to view the launch from an official observation point, a safe distance from the launch site.

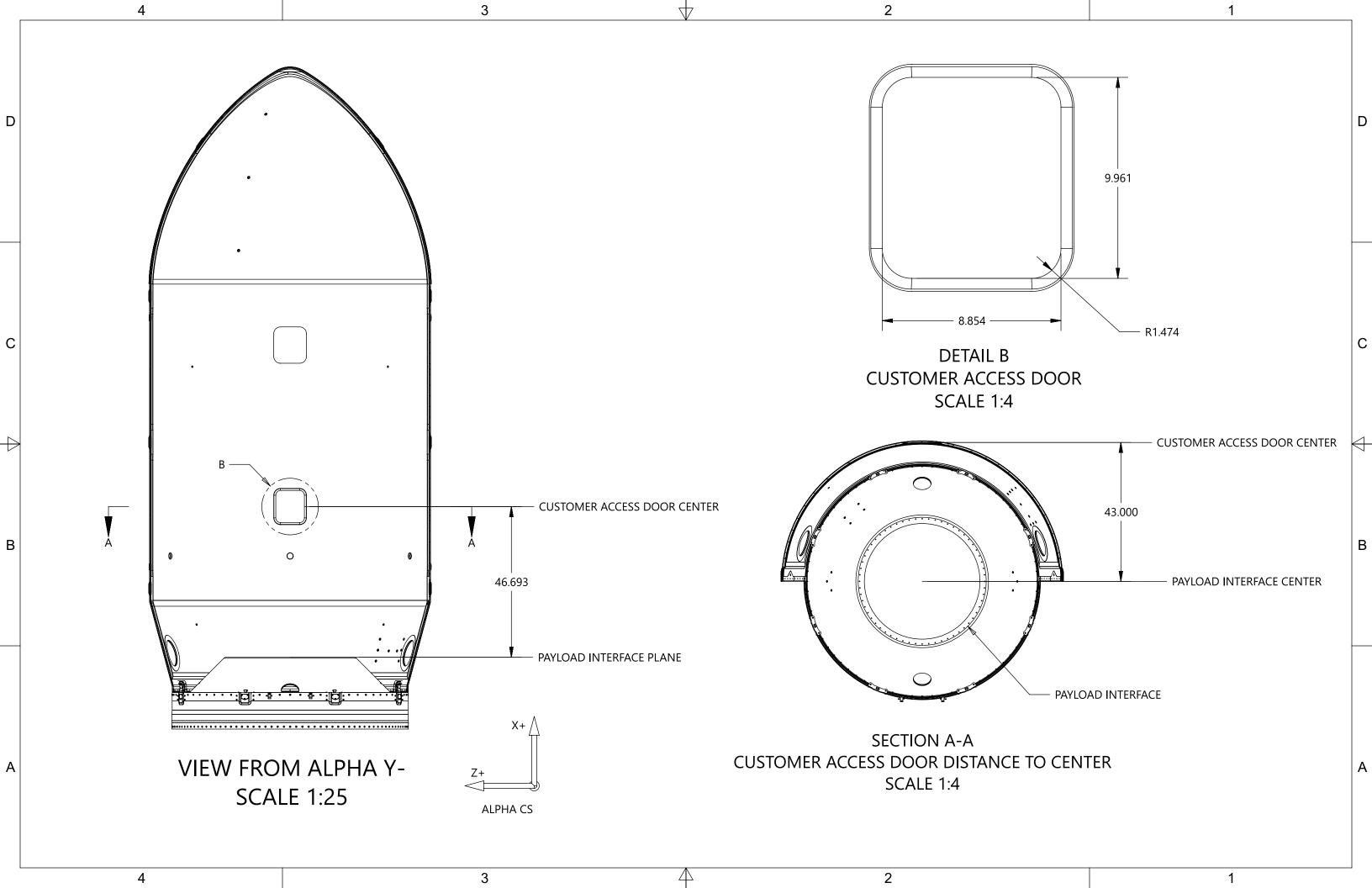
7. REFERENCES ///

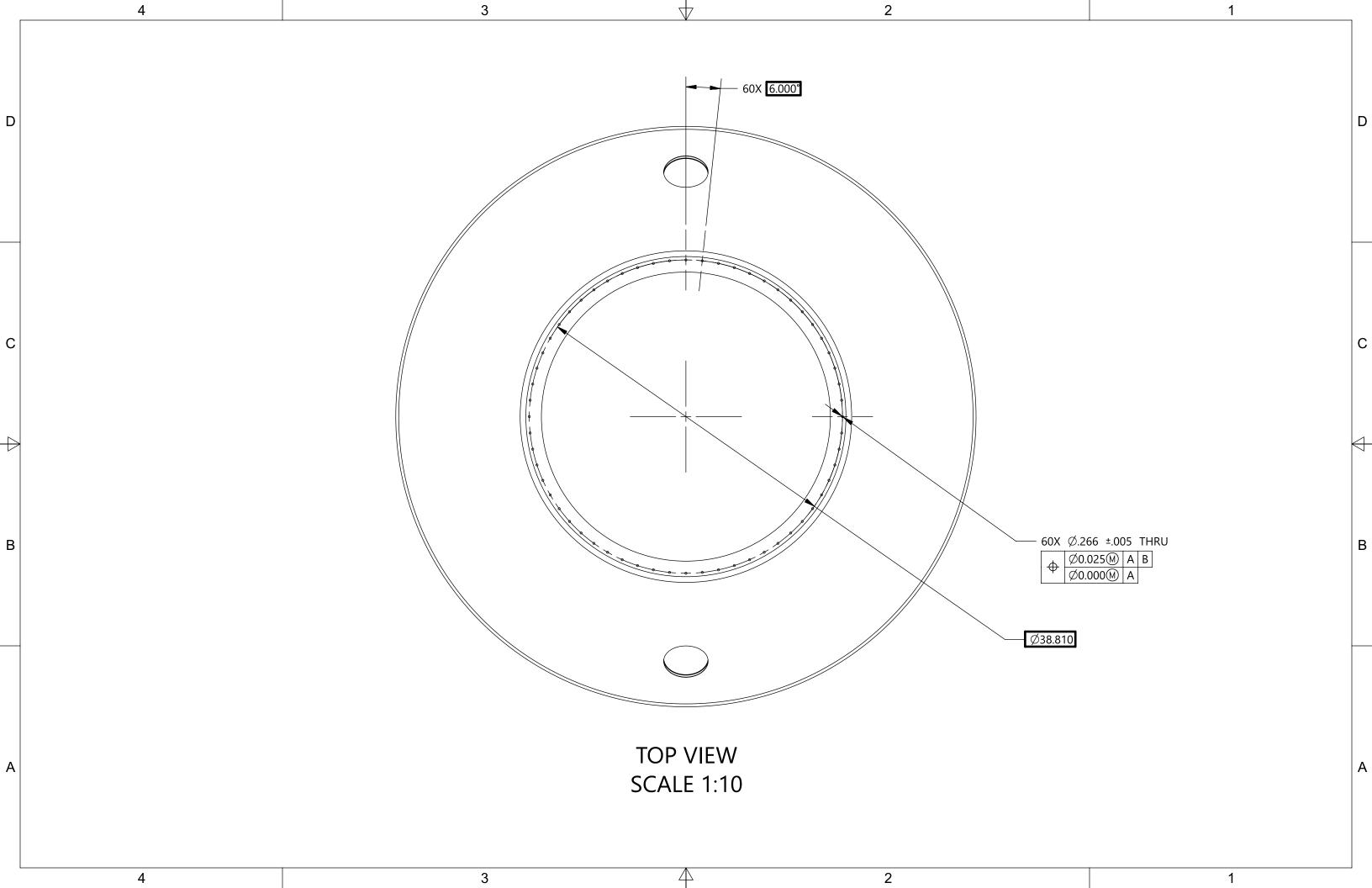
Acronyms

AFSPCM	Air Force Space Command Manual	LEO	Low-Earth Orbit
AFTS	Autonomous Flight Termination System	LRR	Launch Readiness Review
AFTU	Autonomous Flight Termination Unit	LOCC	Launch Operations Command Control
AVI	Avionics	LOX	Liquid Oxygen
AWG	American Wire Gauge	LV	Launch Vehicle
C&DH	Command and Data Handling	MCC	Mission Control Center
CAD	Computer Aided Design	MECO	Main Engine Cut-Off
CCSFS	Cape Canaveral Space Force Station	MEOP	Maximum Expected Operating Pressure
CLA	Coupled Loads Analysis	MRR	Mission Readiness Review
COTS	Commercial-Off-The-Shelf	MSPSP	Missile System Prelaunch Safety Package
CG	Center of Gravity	OASPL	Overall Sound Pressure Level
CVCM	Collected Volatile Condensable Materials	PAF	Payload Attach Fitting
EAR	Export Administration Regulations	PCS	Probability of Command Shutdown
EEE	Electrical, Electronic and Electromechanical	PLF	Payload Fairing
EGSE	Electrical Ground Support Equipment	PPF	Payload Processing Facility
EMC	Electromagnetic Compatibility	PS	Payload Segment
EMI	Electromagnetic Interference	PSD	Power Spectral Density
EPS	Electrical Power System	QPSK	Quadrature Phase Shift Keying
EELV	Evolved Expendable Launch Vehicle	RAAN	Right Ascension of the Ascending Node
ESPA	(EELV) Secondary Payload Adapter	RCC	Range Commander Council
FAA	Federal Aviation Administration	RF	Radio Frequency
FEA	Finite Element Analysis	RP-1	Kerosene Propellant
FMM	Firefly Mission Manager	SECO	Second Engine Cut-Off
FRR	Flight Readiness Review	SLC-2	Space Launch Complex 2
FPS	Frames Per Second	SLC-20	Space Launch Complex 20
GLOW	Gross Lift-Off Weight	SMC	Space and Missile Systems Center
GN2	Gaseous Nitrogen	SRS	Shock Response System
GN&C	Guidance, Navigation and Control	SSO	Sun-Synchronous Orbit
GPS	Global Positioning System	TBC	To Be Confirmed
GRMS	Gravity Root Mean Square Acceleration	TBD	To Be Determined
GSE	Ground Support Equipment	TML	Total Mass Loss
GUI	Graphical User Interface	TRL	Technology Readiness Level
HEPA	High Efficiency Particulate Air	VSFB	Vandenberg Space Force Base
HIF	Horizontal Integration Facility		
ICD	Interface Control Document		
ISO	International Organization for Standardization		
I _{sp}	Specific Impulse		
ITAR	International Traffic in Arms Regulations		

List of Figures


Figure 1. Firefly's Successful Orbital Alpha Flight & Payload Deployment on October 1, 2022	3
Figure 2. Alpha Launch Vehicle	5
Figure 3. Alpha West Coast Performance Capability for Common Inclinations	6
Figure 4. Alpha East Coast Performance Capability for Common Inclinations	6
Figure 5. Alpha Flight Profile	7
Figure 6. Alpha Payload Fairing Dynamic Envelope	8
Figure 7. Allowable Payload CG Height	9
Figure 8. Payload Interface Dimensions in Launch Vehicle Coordinate Frame	9
Figure 9. Common Payload Attach Fitting Configurations	10
Figure 10. Alpha Electrical Interface	11
Figure 11. Alpha Maximum Quasi-Static Load Factors	12
Figure 12. Alpha Maximum Predicted Acoustic Environment	13
Figure 13. Alpha Maximum Predicted Shock Response Spectrum	14
Figure 14. Alpha Random Vibration Environment Plot	15
Figure 15. Alpha Axial Sine Vibration Environment	16
Figure 16. Alpha Lateral Sine Vibration Environment	17
Figure 17. Alpha Payload Fairing Venting Environment	18
Figure 18. Nominal Payload Processing Flow	22
Figure 19. Firefly's Texas Headquarters, Production, and Test Facilities	26
Figure 20. VSFB Launch Inclinations and Azimuths	27
Figure 21. CCSFS Launch Inclinations and Azimuths	28
Figure 22. VSFB Horizontal Integration Facility	29
Figure 23 PPF Lavout	30


List of Tables


Table 1. Alpha Launch Vehicle Specifications	4
Table 2. Payload Injection and Separation	7
Table 3. Alpha Sound Pressure Levels	13
Table 4. Alpha Frequency and Acceleration Levels	14
Table 5. Alpha Random Vibration Frequency and PSD Levels	15
Table 6. Axial Sine Frequency and Acceleration Levels	16
Table 7. Lateral Sine Frequency and Acceleration Levels	17
Table 8. Thermal and Cleanliness Environments	19
Table 9. Alpha Radio Frequency and EMI/EMC Environments	20
Table 10. Notional Launch Campaign Timeline	23
Table 11. Customer Deliverables	24

APPENDIX A

Appendix A contains detailed drawings of the Alpha fairing dynamic envelope, fairing access doors, and payload base mechanical interface. The Alpha fairing dynamic envelope represents the maximum spacecraft volume the Alpha fairing can accommodate. The fairing access doors are customizable as a mission unique service. Their size and location can be modified within structural limits of the fairing. The doors shown below are an example. The payload base assembly mechanical interface shows the standard spacecraft interface to the Alpha vehicle. Firefly can provide mission unique adapters with customized interfaces. All dimensions are in inches.

